λ Tony's Blog λ
Haskell exercises for beginners
Posted on July 17, 2008The exercises below are similar to my previous ‘Scala exercises for beginners’, except the rules a little clearer. For those of who have emailed me or submitted responses here on the blog, I will get around to providing you feedback, however, I’d prefer to do so on the revised version of the Exercises since then I can maintain a bit of clarity in explaining the solutions; specifically, why one may be preferred over another. I hope you don’t mind.
If you have not used Haskell before, download and install GHC, start up the interpreter (ghci) and load the source file. e.g. :load Exercises.hs
If you are on Debian, you can install GHC and start the interpreter with: apt-get install ghc6 && ghci
.
The source file below can be found here.
-- + Complete the 10 exercises below by filling out the function bodies.
-- The code currently compiles, but none of the tests pass (the test function).
-- Replace the function bodies (error "todo") with an appropriate solution.
-- + These exercises may be done in any order, however:
-- Exercises are generally increasing in difficulty, though some people may find later exercise easier.
-- The tests are written to execute in the order 1 to 10, so you need to have Exercise n passing before Exercise (n+1) passes.
-- + Note the existence of the library function max :: Int -> Int -> Int which will help you with Exercise 9.
-- + Bonus for using the provided functions or for using one exercise solution to help solve another.
-- + Approach with your best available intuition; just dive in and do what you can!
-- TOTAL marks: /66
module L02.List where
import Prelude hiding (sum, length, map, filter, maximum, reverse)
-- BEGIN Helper functions and data types
-- The custom list type
data List t = Nil | t :| List t deriving Eq
-- Right-associative
infixr 5 :|
instance (Show t) => Show (List t) where
show = show . foldRight (:) []
-- functions over List that you may consider using
foldRight :: (a -> b -> b) -> b -> List a -> b
Nil = b
foldRight _ b :| t) = f h (foldRight f b t)
foldRight f b (h
foldLeft :: (b -> a -> b) -> b -> List a -> b
Nil = b
foldLeft _ b :| t) = let b' = f b h in b' `seq` foldLeft f b' t
foldLeft f b (h
reduceRight :: (a -> a -> a) -> List a -> a
Nil = error "bzzt. reduceRight on empty list"
reduceRight _ :| t) = foldRight f h t
reduceRight f (h
reduceLeft :: (a -> a -> a) -> List a -> a
Nil = error "bzzt. reduceLeft on empty list"
reduceLeft _ :| t) = foldLeft f h t
reduceLeft f (h
-- END Helper functions and data types
-- BEGIN Exercises
-- Exercise 1
-- Relative Difficulty: 1
-- Correctness: 2.0 marks
-- Performance: 0.5 mark
-- Elegance: 0.5 marks
-- Total: 3
headOr :: List a -> a -> a
= error "todo"
headOr
-- Exercise 2
-- Relative Difficulty: 2
-- Correctness: 2.5 marks
-- Performance: 1 mark
-- Elegance: 0.5 marks
-- Total: 4
sum :: List Int -> Int
sum = error "todo"
-- Exercise 3
-- Relative Difficulty: 2
-- Correctness: 2.5 marks
-- Performance: 1 mark
-- Elegance: 0.5 marks
-- Total: 4
length :: List a -> Int
length = error "todo"
-- Exercise 4
-- Relative Difficulty: 5
-- Correctness: 4.5 marks
-- Performance: 1.0 mark
-- Elegance: 1.5 marks
-- Total: 7
map :: (a -> b) -> List a -> List b
map = error "todo"
-- Exercise 5
-- Relative Difficulty: 5
-- Correctness: 4.5 marks
-- Performance: 1.5 marks
-- Elegance: 1 mark
-- Total: 7
filter :: (a -> Bool) -> List a -> List a
filter = error "todo"
-- Exercise 6
-- Relative Difficulty: 5
-- Correctness: 4.5 marks
-- Performance: 1.5 marks
-- Elegance: 1 mark
-- Total: 7
append :: List a -> List a -> List a
= error "todo"
append
-- Exercise 7
-- Relative Difficulty: 5
-- Correctness: 4.5 marks
-- Performance: 1.5 marks
-- Elegance: 1 mark
-- Total: 7
flatten :: List (List a) -> List a
= error "todo"
flatten
-- Exercise 8
-- Relative Difficulty: 7
-- Correctness: 5.0 marks
-- Performance: 1.5 marks
-- Elegance: 1.5 mark
-- Total: 8
flatMap :: (a -> List b) -> List a -> List b
= error "todo"
flatMap
-- Exercise 9
-- Relative Difficulty: 8
-- Correctness: 3.5 marks
-- Performance: 3.0 marks
-- Elegance: 2.5 marks
-- Total: 9
maximum :: List Int -> Int
maximum = error "todo"
-- Exercise 10
-- Relative Difficulty: 10
-- Correctness: 5.0 marks
-- Performance: 2.5 marks
-- Elegance: 2.5 marks
-- Total: 10
reverse :: List a -> List a
reverse = error "todo"
-- END Exercises
-- BEGIN Tests for Exercises
test :: IO ()
=
test let showNil = show (Nil :: List Int)
=
results
[-- headOr
"headOr",
(show (headOr (1 :| 2 :| 3 :| Nil) 7)
show 1),
,
"headOr",
(show (headOr Nil 8)
show 8),
,
-- sum
"sum",
(show (sum (1 :| 2 :| 3 :| Nil))
show 6),
,
"sum",
(show (sum Nil)
show 0),
,
-- length
"length",
(show (length ('a' :| 'b' :| 'c' :| Nil))
show 3),
,
"length",
(show (length Nil)
show 0),
,
-- map
"map",
(show (map (+1) (1 :| 2 :| 3 :| Nil))
show (2 :| 3 :| 4 :| Nil)),
,
"map",
(show (map (+1) Nil)
, showNil),
-- filter
"filter",
(show (filter even (1 :| 2 :| 3 :| Nil))
show (2 :| Nil)),
,
"filter",
(show (filter even Nil)
, showNil),
-- append
"append",
(show (append (1 :| 2 :| 3 :| Nil) (4 :| Nil))
show (1 :| 2 :| 3 :| 4 :| Nil)),
,
"append",
(show (append (1 :| 2 :| 3 :| Nil) Nil)
show (1 :| 2 :| 3 :| Nil)),
,
-- flatten
"flatten",
(show (flatten ((1 :| 2 :| Nil) :| ((3 :| 4 :| Nil) :| Nil)))
show (1 :| 2 :| 3 :| 4 :| Nil)),
,
-- flatMap
"flatMap",
(show (flatMap (\n -> (n+1) :| (n+2) :| Nil) (1 :| 2 :| 3 :| Nil))
show (2 :| 3 :| 3 :| 4 :| 4 :| 5 :| Nil)),
,
-- maximum
"maximum",
(show (maximum (3 :| 1 :| 2 :| Nil))
show 3),
,
-- reverse
"reverse",
(show (reverse (1 :| 2 :| 3 :| Nil))
show (3 :| 2 :| 1 :| Nil))
,
]= do print ("=== " ++ n ++ " ===")
check (n, a, b) print (if a == b then "PASS" else "FAIL Expected: " ++ b ++ " Actual: " ++ a)
in mapM_ check results
-- END Tests for Exercises
-- Utility
all ::
-> Bool)
(a -> List a
-> Bool
all p =
&&) True . map p
foldRight (
isEmpty ::
List a
-> Bool
Nil = True
isEmpty :|_) = False
isEmpty (_
contains ::
Eq a =>
List a
-> a
-> Bool
Nil _ = False
contains :|t) e = h == e || contains t e contains (h